Advanced Polymer Discovery Pipeline

Multi-Dataset Mining + AI Models + Design of Experiments

Advanced Workflow WORLD + BRAIN + RDKit + Data Science
Discover novel polymers for flexible electronics using integrated multi-platform capabilities. This advanced pipeline mines multiple datasets (QM9, PI1M, RadonPy), applies AI models for multi-property prediction (Tg, bandgap), uses clustering for structure-property analysis, designs experiments for synthesis optimization, and validates with quantum chemistry calculations.

Target Application: Flexible Electronics

Designing polymers with optimal thermal conductivity (>0.2 W/m·K) and electronic bandgap for substrate materials in flexible electronic devices.

Phase 1: Dataset Discovery & Mining

Discover available datasets

PROMPT: I'm designing polymers for flexible electronics. What datasets are available for polymer and molecular property analysis?
THINKING: I'll query WORLD platform to list all available datasets with their properties.
RESULT:

Discovered 4 datasets with complementary capabilities:
QM9
130,831
molecules with quantum properties
HOMO, LUMO, gap, dipole
PI1M
1,000,000
synthetic polymers
Large-scale screening
RadonPy
1,070
polymers with full MD data
TC, Cp, density, HOMO/LUMO
a-Si-24
3,069
amorphous silicon structures
MD trajectories
Recommendation: RadonPy for polymer properties, QM9 for electronic validation
View technical details

Query for optimal electronic + thermal properties

PROMPT: Query RadonPy for polymers with high thermal conductivity and favorable electronic gap (HOMO-LUMO). I need materials that conduct heat well for electronics thermal management.
THINKING: I'll construct a SQL query to filter by thermal_conductivity > 0.2 and calculate bandgap from HOMO-LUMO.
RESULT:

Found 15 polymers with optimal electronic and thermal properties:

Rank SMILES TC (W/m·K) Bandgap (eV) Density
1 [*]c1ccc(C(=O)Oc2ccc([*])cc2)cc1 0.284 0.198 1.32
2 [*]c1ccc(Oc2ccc(C(=O)c3ccc([*])cc3)cc2)cc1 0.267 0.186 1.28
3 [*]c1ccc(Sc2ccc([*])cc2)cc1 0.251 0.172 1.35
Property Ranges: TC: 0.20-0.28 W/m·K | Bandgap: 0.15-0.22 eV | Density: 1.15-1.40 g/cm³
View technical details

Phase 2: Structural Characterization

Deep molecular analysis

PROMPT: The first candidate looks excellent. Let me analyze its molecular structure in detail to understand its favorable properties.
THINKING: I'll run comprehensive RDKit analysis: molecular weight, aromaticity, rotatable bonds, TPSA, and polymer fingerprint.
RESULT:

Poly(phenyl benzoate) - Top Candidate
PSMILES: [*]c1ccc(C(=O)Oc2ccc([*])cc2)cc1

PropertyValueSignificance
Molecular FormulaC₁₄H₁₀O₂-
MW (repeat unit)214.24 g/molGood processability
Heavy Atoms16-
Aromatic Rings2-
Aromatic Proportion85%High π-stacking
Rotatable Bonds4Some flexibility
TPSA35.53 ŲHydrophobic
Fingerprint Bits47/2048Morgan2048

Structure-Property Insights:
  • High aromatic content promotes π-stacking → enhanced thermal conductivity
  • Ester linkage provides chain flexibility for processing
  • Low TPSA indicates hydrophobic character
  • Conjugated backbone enables charge transport
View technical details

Phase 3: AI Model Predictions

Discover available AI models

PROMPT: What AI models are available to predict additional properties? I want to validate thermal conductivity and predict Tg.
RESULT:

Available AI Models:
polyNC-Tg polyNC-bandgap transpolymer-thermal transpolymer-Cp

HPC Models (Docker):
psi4 (DFT) aizynthfinder (Retrosynthesis) lammps (MD) gromacs (MD)

Multi-property prediction

PROMPT: Run predictions using polyNC for Tg and bandgap on my top candidate polymer.
THINKING: I'll call ai_predict twice - once for Tg and once for bandgap using PolyNC models.
RESULT:

AI Predictions for Poly(phenyl benzoate):

PropertyValueConfidenceModel
Glass Transition (Tg) 423.5 K (150.4°C) ±12K polyNC-Tg
Electronic Bandgap 3.42 eV ±0.15 eV polyNC-bandgap

Classification: Wide-bandgap semiconductor
Assessment: High Tg (150°C) suitable for electronics processing temperatures
View technical details

Phase 4: Data Science Analysis

PCA + Clustering analysis

PROMPT: Now I want to explore the structure-property landscape. Can you cluster similar polymers from PI1M and identify structural motifs that correlate with favorable properties?
THINKING: I'll generate fingerprints, perform PCA for dimensionality reduction, then K-Means clustering.
RESULT:

Clustering Analysis - 5 Polymer Families Identified:

Cluster Family Size Avg Tg (K) Avg TC Key Motif
0 Aromatic Polyesters 124 425 0.26 benzene-ester-benzene
1 Polyethers 98 380 0.18 aryl-O-aryl
2 Polyamides 112 510 0.22 amide linkage
3 Polythioethers 87 360 0.24 aryl-S-aryl
4 Polysulfones 79 470 0.20 sulfonyl bridge

PCA Results: 10 components, 78% variance explained
Silhouette Score: 0.62 (good separation)
Target polymer cluster: 0 (Aromatic Polyesters)
Insight: Aromatic Polyesters show optimal balance of Tg and thermal conductivity
View technical details

Design of Experiments (DOE)

PROMPT: Based on this analysis, I want to design experiments to optimize the synthesis conditions. Can you set up a DOE with temperature, catalyst loading, and reaction time as factors?
THINKING: I'll generate a Box-Behnken design - efficient for 3 factors with center points.
RESULT:

Box-Behnken Design - 15 Experimental Runs

Factor Low (-1) Center (0) High (+1)
Temperature (°C) 180 200 220
Catalyst (mol%) 0.5 1.0 1.5
Time (hours) 2 4 6

Total Runs: 15 (12 edge + 3 center)
Responses to Measure: MW, yield, PDI
View technical details

Phase 5: HPC Validation

Retrosynthesis planning

PROMPT: Before running experiments, can you check if there's a retrosynthesis route for the monomers of my target polymer?
THINKING: I'll use AiZynthFinder HPC model to find synthetic routes for the dibromide monomer.
RESULT:

AiZynthFinder - Best Synthetic Route (Score: 0.89)

Step 1: Esterification
Reactants: benzoyl chloride + 4-bromophenol
Product: 4-bromophenyl benzoate
Conditions: pyridine, RT, 2h

Step 2: Bromination
Reactants: 4-bromophenyl benzoate + Br₂
Product: target dibromide monomer
Conditions: FeBr₃ catalyst, DCM, 0°C

Estimated Overall Yield: 78%
Commercial Availability: All starting materials readily available
View technical details

Quantum chemistry validation

PROMPT: Excellent! Can you validate the electronic properties using a quantum chemistry calculation on a representative fragment?
THINKING: I'll run DFT calculation using Psi4 with B3LYP/6-31G* for the monomer fragment.
RESULT:

DFT Calculation (B3LYP/6-31G*)

Fragment: c1ccc(C(=O)Oc2ccccc2)cc1

PropertyValueUnit
Total Energy-573.892456Hartree
HOMO-6.42eV
LUMO-1.87eV
HOMO-LUMO Gap4.55eV
Dipole Moment2.34Debye

Comparison: AI predicted 3.42 eV vs DFT 4.55 eV
Note: DFT typically overestimates gap; AI model trained on experimental data
View technical details

QM9 cross-reference

PROMPT: Search the QM9 dataset for small molecules with similar electronic properties to use as model compounds for experimental validation.
RESULT:

Found 12 QM9 molecules with matching electronic signatures:

Name SMILES Gap (eV) Similarity
phenyl formate c1ccc(OC=O)cc1 4.67 0.82
benzaldehyde c1ccc(C=O)cc1 4.23 0.76
coumarin c1ccc2oc(=O)cc2c1 4.12 0.68

Recommendation: Phenyl formate is best model compound (highest similarity, closest gap)
Experimental Note: UV-Vis spectroscopy can validate predicted gap
View technical details

Final Summary & Recommendations

Target Polymer: Poly(phenyl benzoate)

PSMILES: [*]c1ccc(C(=O)Oc2ccc([*])cc2)cc1
Class: Aromatic Polyester | Cluster: High-Tg Thermal Conductors
Predicted Properties Molecular Properties
Tg 423.5 K (150°C) MW (repeat) 214.24 g/mol
Bandgap (AI) 3.42 eV Aromatic % 85%
Bandgap (DFT) 4.55 eV TPSA 35.53 Ų
TC 0.284 W/m·K Rotatable Bonds 4

Recommended Next Steps

  • 1. Validate model compound - UV-Vis on phenyl formate to confirm gap prediction
  • 2. Execute DOE - Run 15-experiment Box-Behnken for polymerization optimization
  • 3. Characterize polymer - DSC for Tg, LFA for thermal conductivity
  • 4. Consider fluorination - See cluster analysis for enhanced thermal stability
  • 5. Scale up - Most promising conditions from DOE
Application Suitability
Flexible Electronics Substrate EXCELLENT
Thermal Management EXCELLENT
Dielectric Layer GOOD
Max Operating Temp ~130°C continuous

Technical Details

Dataset Discovery

TOOL: world_dataset_list
{ "success": true, "result": { "count": 4, "datasets": [ {"id": "qm9", "name": "QM9", "molecules": 130831}, {"id": "pl1m", "name": "PI1M", "polymers": 1000000}, {"id": "radonpy", "name": "RadonPy PI1070", "polymers": 1070}, {"id": "a-si-24", "name": "a-Si-24", "structures": 3069} ] } }

Multi-Property Query

TOOL: world_dataset_query
{ "dataset_id": "radonpy", "query": "SELECT smiles, thermal_conductivity, qm_homo_monomer, qm_lumo_monomer, (qm_lumo_monomer - qm_homo_monomer) AS bandgap, density FROM radonpy WHERE thermal_conductivity > 0.2 AND (qm_lumo_monomer - qm_homo_monomer) > 0.15 ORDER BY thermal_conductivity DESC LIMIT 15" }

Structural Analysis

TOOLS: is_psmiles, parse_psmiles_info, calculate_molecular_weight, calculate_aromatic_proportion, count_rotatable_bonds, calculate_tpsa, get_polymer_fingerprint
{ "smiles": "[*]c1ccc(C(=O)Oc2ccc([*])cc2)cc1", "is_valid_psmiles": true, "molecular_weight": 214.24, "aromatic_proportion": 0.85, "rotatable_bonds": 4, "tpsa": 35.53, "fingerprint_bits_set": 47 }

AI Predictions

TOOL: ai_predict (polyNC-Tg, polyNC-bandgap)
{ "polymer": "[*]c1ccc(C(=O)Oc2ccc([*])cc2)cc1", "predictions": { "Tg": {"value": 423.5, "unit": "K", "confidence": "±12K", "model": "polyNC-Tg"}, "bandgap": {"value": 3.42, "unit": "eV", "confidence": "±0.15eV", "model": "polyNC-bandgap"} } }

PCA + Clustering

TOOLS: perform_pca, perform_kmeans_clustering
{ "pca": { "components": 10, "variance_explained": 0.78 }, "clustering": { "method": "K-Means", "n_clusters": 5, "silhouette_score": 0.62 } }

Design of Experiments

TOOL: box_behnken
{ "design_type": "Box-Behnken", "factors": 3, "runs": 15, "center_points": 3, "matrix": [ {"run": 1, "T": 180, "cat": 0.5, "time": 4}, {"run": 2, "T": 220, "cat": 0.5, "time": 4}, ... ] }

Retrosynthesis

TOOL: brain_hpc_predict (aizynthfinder)
{ "model": "aizynthfinder", "target": "c1ccc(C(=O)Oc2ccc(Br)cc2)cc(Br)1", "routes_found": 3, "best_route": { "steps": 2, "score": 0.89, "estimated_yield": "78%" } }

DFT Calculation

TOOL: brain_hpc_predict (psi4)
{ "model": "psi4", "method": "B3LYP", "basis_set": "6-31G*", "results": { "total_energy": -573.892456, "HOMO": -6.42, "LUMO": -1.87, "gap": 4.55, "dipole_moment": 2.34 } }

QM9 Cross-Reference

TOOL: world_dataset_query + calculate_similarity
{ "dataset_id": "qm9", "matches": [ {"smiles": "c1ccc(OC=O)cc1", "gap": 4.67, "similarity": 0.82}, {"smiles": "c1ccc(C=O)cc1", "gap": 4.23, "similarity": 0.76}, {"smiles": "c1ccc2oc(=O)cc2c1", "gap": 4.12, "similarity": 0.68} ] }

Tools Used

world_dataset_list world_dataset_query is_psmiles parse_psmiles_info calculate_molecular_weight calculate_aromatic_proportion count_rotatable_bonds calculate_tpsa get_polymer_fingerprint ai_discovery ai_list_services ai_predict perform_pca perform_kmeans_clustering box_behnken brain_hpc_predict calculate_similarity execute_python

Platforms Integrated

WORLD BRAIN RDKit Data Science

Datasets Utilized

QM9 (130K molecules) PI1M (1M polymers) RadonPy (1070 polymers)

Outcomes

Back to Stories