Comparing Polymer Structures with AI

Integrated Workflow WORLD + BRAIN + RDKit
Discover high-performance polymers using integrated WORLD, RDKit, and BRAIN tools. Query RadonPy database for thermal conductivity data, analyze molecular structures, and predict properties with ML. Found 24 polymers with TC > 0.4 W/(m.K), top performer at 0.619 (polyimide). Structural analysis shows 100% aromatic, 1 rotatable bond. PolyNC predicted Tg = 315°C confirming high-temperature stability.

Chat Dialogs

Filter high thermal conductivity polymers

PROMPT: find polymers with thermal conductivity above 0.4
CONTEXT: RadonPy contains thermal conductivity data computed via Green-Kubo autocorrelation method from MD simulations. Values are in W/(m.K). High TC polymers (>0.3) are useful for thermal management applications.
THINKING: I'll query RadonPy for high thermal conductivity polymers using a WHERE filter.
RESULT:

Found 24 polymers with thermal conductivity above 0.4 W/(m.K).
Top performers from RadonPy database:

| SMILES | TC (W/m.K) | Density |
|-------------------------------------------------------------|------------|---------|
| *c1ccc(-n2c(=O)c3cc4c(=O)n(*)c(=O)c4cc3c2=O)c(C)c1 (PI690) | 0.619 | 1.160 |
| *c1ccc(*)s1 (PI914 - polythiophene) | 0.597 | 1.284 |
| *NC(=O)c1ccc(cc1)C(=O)Nc1ccc(cc1)c1ccc(cc1)* (PI627) | 0.576 | 1.210 |

These high-TC polymers are candidates for thermal interface materials.
View technical details

Analyze top thermal conductor structure

PROMPT: The top thermal conductor looks interesting. Can you analyze its molecular structure? I want to understand why it has such high thermal conductivity.
CONTEXT: The polymer PI690 (*c1ccc(-n2c(=O)c3cc4c(=O)n(*)c(=O)c4cc3c2=O)c(C)c1) is a polyimide with imide rings and aromatic backbone - known for high thermal conductivity.
THINKING: I'll run a complete structural analysis using RDKit cheminformatics tools: calculate_molecular_weight, calculate_aromatic_proportion, count_rotatable_bonds.
RESULT:

Polyimide (PI690) - Top Thermal Conductor
SMILES: *c1ccc(-n2c(=O)c3cc4c(=O)n(*)c(=O)c4cc3c2=O)c(C)c1

Structural Analysis:
| Property | Value |
|---------------------|-----------------------------|
| Molecular weight | 304.26 g/mol |
| Aromatic rings | 4 |
| Aromatic proportion | 100% (fully aromatic) |
| Rotatable bonds | 1 (very rigid backbone) |
| TC from RadonPy | 0.619 W/(m.K) |
| Density | 1.160 g/cm³ |

Key features explaining high thermal conductivity:
- Fully aromatic structure: 100% aromatic rings for efficient phonon transport
- Only 1 rotatable bond: extremely rigid backbone
- Imide groups provide strong intermolecular interactions
- Polyimide class: known for excellent thermal properties
View technical details

Predict Tg with ML model

PROMPT: Can you predict the glass transition temperature for this polyimide using an ML model?
CONTEXT: BRAIN platform hosts PolyNC model for Tg prediction. This validates the expected high-temperature stability of polyimides.
THINKING: I'll use PolyNC on BRAIN to predict Tg for the top thermal conductor.
RESULT:

Using PolyNC (Neural Network) for Tg prediction...

SMILES: *c1ccc(-n2c(=O)c3cc4c(=O)n(*)c(=O)c4cc3c2=O)c(C)c1

PolyNC Prediction:
| Property | Value |
|-------------------|-------------------------|
| Predicted Tg | 315°C (588K) |
| Computation time | 2700ms |
| Model version | PolyNC v1.3.0 |
| Validation | in_training_range: true |

High Tg (315°C) confirms this polyimide is excellent for:
- High-temperature electronics
- Thermal interface materials
- Aerospace applications
View technical details

Compare with other high-TC polymers

PROMPT: Can you compare the structural features of the top 3 thermal conductors?
CONTEXT: Comparing structural features across high-TC polymers helps identify design principles for thermal materials.
THINKING: I'll analyze all three top performers and compare their molecular properties.
RESULT:

Structural Comparison - Top 3 Thermal Conductors:

| Polymer | TC (W/m.K) | MW (g/mol) | Aromatic % | Rotatable |
|---------|------------|------------|------------|-----------|
| PI690 | 0.619 | 304.26 | 100% | 1 |
| PI914 | 0.597 | 82.13 | 100% | 0 |
| PI627 | 0.576 | 314.34 | 100% | 4 |

Key Design Principles:
- High aromaticity (>85%): enables efficient phonon transport
- Low rotatable bonds: rigid chains reduce phonon scattering
- Conjugated systems: polythiophene (*c1ccc(*)s1) is fully conjugated
- Imide/amide groups: strong intermolecular bonding improves heat transfer

Recommendation: For high thermal conductivity, prioritize:
1. Fully aromatic backbone
2. Minimal rotatable bonds
3. Strong intermolecular interactions (H-bonding, π-stacking)
View technical details

Technical Details

Thermal Conductivity Query

INPUT:
{ "dataset_id": "radonpy", "query": "SELECT smiles, thermal_conductivity, density, monomer_ID FROM radonpy WHERE thermal_conductivity > 0.4 ORDER BY thermal_conductivity DESC LIMIT 10" }
OUTPUT:
{ "success": true, "data": [ {"smiles": "*c1ccc(-n2c(=O)c3cc4c(=O)n(*)c(=O)c4cc3c2=O)c(C)c1", "thermal_conductivity": 0.619, "density": 1.160, "monomer_ID": "PI690"}, {"smiles": "*c1ccc(*)s1", "thermal_conductivity": 0.597, "density": 1.284, "monomer_ID": "PI914"}, {"smiles": "*NC(=O)c1ccc(cc1)C(=O)Nc1ccc(cc1)c1ccc(cc1)*", "thermal_conductivity": 0.576, "density": 1.210, "monomer_ID": "PI627"} ], "rows_returned": 24, "execution_time_ms": 371 }

RDKit Structural Analysis

INPUT (calculate_molecular_weight):
{ "smiles": "*c1ccc(-n2c(=O)c3cc4c(=O)n(*)c(=O)c4cc3c2=O)c(C)c1" }
OUTPUT:
Molecular weight: 304.26 g/mol
INPUT (calculate_aromatic_proportion):
{ "smiles": "*c1ccc(-n2c(=O)c3cc4c(=O)n(*)c(=O)c4cc3c2=O)c(C)c1" }
OUTPUT:
{ "aromatic_rings": 4, "total_rings": 4, "aromatic_proportion": 1.0 }
INPUT (count_rotatable_bonds):
{ "smiles": "*c1ccc(-n2c(=O)c3cc4c(=O)n(*)c(=O)c4cc3c2=O)c(C)c1" }
OUTPUT:
Rotatable bonds: 1

PolyNC Tg Prediction

INPUT:
{ "service_name": "PolyNC", "input_data": { "input_type": "text", "data": { "text": "*c1ccc(-n2c(=O)c3cc4c(=O)n(*)c(=O)c4cc3c2=O)c(C)c1", "property_type": "Tg" } } }
OUTPUT:
{ "success": true, "service_name": "PolyNC", "port": 5102, "prediction": { "success": true, "model_name": "PolyNC", "results": { "prediction": "315", "property_type": "Tg", "smiles": "*c1ccc(-n2c(=O)c3cc4c(=O)n(*)c(=O)c4cc3c2=O)c(C)c1" }, "computation_time_ms": 2699.664, "validation": { "in_training_range": true } } }

Polymer Comparison Analysis

Polythiophene Analysis (PI914):
SMILES: *c1ccc(*)s1 Molecular weight: 82.13 g/mol Aromatic proportion: 100% Rotatable bonds: 0 Thermal conductivity: 0.597 W/(m.K)
Aramid Analysis (PI627):
SMILES: *NC(=O)c1ccc(cc1)C(=O)Nc1ccc(cc1)c1ccc(cc1)* Molecular weight: 314.34 g/mol Aromatic proportion: 100% Rotatable bonds: 4 Thermal conductivity: 0.576 W/(m.K)

Tools Used

world_dataset_query calculate_molecular_weight calculate_aromatic_proportion count_rotatable_bonds ai_list_services ai_predict

Outcomes

Back to Stories