Discover high-performance polymers using integrated WORLD, RDKit, and BRAIN tools. Query RadonPy database
for thermal conductivity data, analyze molecular structures, and predict properties with ML. Found 24 polymers
with TC > 0.4 W/(m.K), top performer at 0.619 (polyimide). Structural analysis shows 100% aromatic,
1 rotatable bond. PolyNC predicted Tg = 315°C confirming high-temperature stability.
- WORLD for database queries (RadonPy)
- RDKit for structural analysis
- BRAIN for ML predictions (PolyNC)
- Full discovery pipeline integration
Chat Dialogs
Filter high thermal conductivity polymers
PROMPT:
find polymers with thermal conductivity above 0.4
CONTEXT: RadonPy contains thermal conductivity data computed via Green-Kubo
autocorrelation method from MD simulations. Values are in W/(m.K). High TC polymers
(>0.3) are useful for thermal management applications.
THINKING: I'll query RadonPy for high thermal conductivity polymers using a WHERE filter.
RESULT:
Found 24 polymers with thermal conductivity above 0.4 W/(m.K).
Top performers from RadonPy database:
| SMILES | TC (W/m.K) | Density |
|-------------------------------------------------------------|------------|---------|
| *c1ccc(-n2c(=O)c3cc4c(=O)n(*)c(=O)c4cc3c2=O)c(C)c1 (PI690) | 0.619 | 1.160 |
| *c1ccc(*)s1 (PI914 - polythiophene) | 0.597 | 1.284 |
| *NC(=O)c1ccc(cc1)C(=O)Nc1ccc(cc1)c1ccc(cc1)* (PI627) | 0.576 | 1.210 |
These high-TC polymers are candidates for thermal interface materials.
View technical details
Found 24 polymers with thermal conductivity above 0.4 W/(m.K).
Top performers from RadonPy database:
| SMILES | TC (W/m.K) | Density |
|-------------------------------------------------------------|------------|---------|
| *c1ccc(-n2c(=O)c3cc4c(=O)n(*)c(=O)c4cc3c2=O)c(C)c1 (PI690) | 0.619 | 1.160 |
| *c1ccc(*)s1 (PI914 - polythiophene) | 0.597 | 1.284 |
| *NC(=O)c1ccc(cc1)C(=O)Nc1ccc(cc1)c1ccc(cc1)* (PI627) | 0.576 | 1.210 |
These high-TC polymers are candidates for thermal interface materials.
Analyze top thermal conductor structure
PROMPT:
The top thermal conductor looks interesting. Can you analyze its molecular structure?
I want to understand why it has such high thermal conductivity.
CONTEXT: The polymer PI690 (*c1ccc(-n2c(=O)c3cc4c(=O)n(*)c(=O)c4cc3c2=O)c(C)c1)
is a polyimide with imide rings and aromatic backbone - known for high thermal conductivity.
THINKING: I'll run a complete structural analysis using RDKit cheminformatics tools:
calculate_molecular_weight, calculate_aromatic_proportion, count_rotatable_bonds.
RESULT:
Polyimide (PI690) - Top Thermal Conductor
SMILES: *c1ccc(-n2c(=O)c3cc4c(=O)n(*)c(=O)c4cc3c2=O)c(C)c1
Structural Analysis:
| Property | Value |
|---------------------|-----------------------------|
| Molecular weight | 304.26 g/mol |
| Aromatic rings | 4 |
| Aromatic proportion | 100% (fully aromatic) |
| Rotatable bonds | 1 (very rigid backbone) |
| TC from RadonPy | 0.619 W/(m.K) |
| Density | 1.160 g/cm³ |
Key features explaining high thermal conductivity:
- Fully aromatic structure: 100% aromatic rings for efficient phonon transport
- Only 1 rotatable bond: extremely rigid backbone
- Imide groups provide strong intermolecular interactions
- Polyimide class: known for excellent thermal properties
View technical details
Polyimide (PI690) - Top Thermal Conductor
SMILES: *c1ccc(-n2c(=O)c3cc4c(=O)n(*)c(=O)c4cc3c2=O)c(C)c1
Structural Analysis:
| Property | Value |
|---------------------|-----------------------------|
| Molecular weight | 304.26 g/mol |
| Aromatic rings | 4 |
| Aromatic proportion | 100% (fully aromatic) |
| Rotatable bonds | 1 (very rigid backbone) |
| TC from RadonPy | 0.619 W/(m.K) |
| Density | 1.160 g/cm³ |
Key features explaining high thermal conductivity:
- Fully aromatic structure: 100% aromatic rings for efficient phonon transport
- Only 1 rotatable bond: extremely rigid backbone
- Imide groups provide strong intermolecular interactions
- Polyimide class: known for excellent thermal properties
Predict Tg with ML model
PROMPT:
Can you predict the glass transition temperature for this polyimide using an ML model?
CONTEXT: BRAIN platform hosts PolyNC model for Tg prediction.
This validates the expected high-temperature stability of polyimides.
THINKING: I'll use PolyNC on BRAIN to predict Tg for the top thermal conductor.
RESULT:
Using PolyNC (Neural Network) for Tg prediction...
SMILES: *c1ccc(-n2c(=O)c3cc4c(=O)n(*)c(=O)c4cc3c2=O)c(C)c1
PolyNC Prediction:
| Property | Value |
|-------------------|-------------------------|
| Predicted Tg | 315°C (588K) |
| Computation time | 2700ms |
| Model version | PolyNC v1.3.0 |
| Validation | in_training_range: true |
High Tg (315°C) confirms this polyimide is excellent for:
- High-temperature electronics
- Thermal interface materials
- Aerospace applications
View technical details
Using PolyNC (Neural Network) for Tg prediction...
SMILES: *c1ccc(-n2c(=O)c3cc4c(=O)n(*)c(=O)c4cc3c2=O)c(C)c1
PolyNC Prediction:
| Property | Value |
|-------------------|-------------------------|
| Predicted Tg | 315°C (588K) |
| Computation time | 2700ms |
| Model version | PolyNC v1.3.0 |
| Validation | in_training_range: true |
High Tg (315°C) confirms this polyimide is excellent for:
- High-temperature electronics
- Thermal interface materials
- Aerospace applications
Compare with other high-TC polymers
PROMPT:
Can you compare the structural features of the top 3 thermal conductors?
CONTEXT: Comparing structural features across high-TC polymers
helps identify design principles for thermal materials.
THINKING: I'll analyze all three top performers and compare their molecular properties.
RESULT:
Structural Comparison - Top 3 Thermal Conductors:
| Polymer | TC (W/m.K) | MW (g/mol) | Aromatic % | Rotatable |
|---------|------------|------------|------------|-----------|
| PI690 | 0.619 | 304.26 | 100% | 1 |
| PI914 | 0.597 | 82.13 | 100% | 0 |
| PI627 | 0.576 | 314.34 | 100% | 4 |
Key Design Principles:
- High aromaticity (>85%): enables efficient phonon transport
- Low rotatable bonds: rigid chains reduce phonon scattering
- Conjugated systems: polythiophene (*c1ccc(*)s1) is fully conjugated
- Imide/amide groups: strong intermolecular bonding improves heat transfer
Recommendation: For high thermal conductivity, prioritize:
1. Fully aromatic backbone
2. Minimal rotatable bonds
3. Strong intermolecular interactions (H-bonding, π-stacking)
View technical details
Structural Comparison - Top 3 Thermal Conductors:
| Polymer | TC (W/m.K) | MW (g/mol) | Aromatic % | Rotatable |
|---------|------------|------------|------------|-----------|
| PI690 | 0.619 | 304.26 | 100% | 1 |
| PI914 | 0.597 | 82.13 | 100% | 0 |
| PI627 | 0.576 | 314.34 | 100% | 4 |
Key Design Principles:
- High aromaticity (>85%): enables efficient phonon transport
- Low rotatable bonds: rigid chains reduce phonon scattering
- Conjugated systems: polythiophene (*c1ccc(*)s1) is fully conjugated
- Imide/amide groups: strong intermolecular bonding improves heat transfer
Recommendation: For high thermal conductivity, prioritize:
1. Fully aromatic backbone
2. Minimal rotatable bonds
3. Strong intermolecular interactions (H-bonding, π-stacking)
Technical Details
Thermal Conductivity Query
INPUT:
{
"dataset_id": "radonpy",
"query": "SELECT smiles, thermal_conductivity, density, monomer_ID FROM radonpy WHERE thermal_conductivity > 0.4 ORDER BY thermal_conductivity DESC LIMIT 10"
}
OUTPUT:
{
"success": true,
"data": [
{"smiles": "*c1ccc(-n2c(=O)c3cc4c(=O)n(*)c(=O)c4cc3c2=O)c(C)c1", "thermal_conductivity": 0.619, "density": 1.160, "monomer_ID": "PI690"},
{"smiles": "*c1ccc(*)s1", "thermal_conductivity": 0.597, "density": 1.284, "monomer_ID": "PI914"},
{"smiles": "*NC(=O)c1ccc(cc1)C(=O)Nc1ccc(cc1)c1ccc(cc1)*", "thermal_conductivity": 0.576, "density": 1.210, "monomer_ID": "PI627"}
],
"rows_returned": 24,
"execution_time_ms": 371
}
RDKit Structural Analysis
INPUT (calculate_molecular_weight):
{
"smiles": "*c1ccc(-n2c(=O)c3cc4c(=O)n(*)c(=O)c4cc3c2=O)c(C)c1"
}
OUTPUT:
Molecular weight: 304.26 g/mol
INPUT (calculate_aromatic_proportion):
{
"smiles": "*c1ccc(-n2c(=O)c3cc4c(=O)n(*)c(=O)c4cc3c2=O)c(C)c1"
}
OUTPUT:
{
"aromatic_rings": 4,
"total_rings": 4,
"aromatic_proportion": 1.0
}
INPUT (count_rotatable_bonds):
{
"smiles": "*c1ccc(-n2c(=O)c3cc4c(=O)n(*)c(=O)c4cc3c2=O)c(C)c1"
}
OUTPUT:
Rotatable bonds: 1
PolyNC Tg Prediction
INPUT:
{
"service_name": "PolyNC",
"input_data": {
"input_type": "text",
"data": {
"text": "*c1ccc(-n2c(=O)c3cc4c(=O)n(*)c(=O)c4cc3c2=O)c(C)c1",
"property_type": "Tg"
}
}
}
OUTPUT:
{
"success": true,
"service_name": "PolyNC",
"port": 5102,
"prediction": {
"success": true,
"model_name": "PolyNC",
"results": {
"prediction": "315",
"property_type": "Tg",
"smiles": "*c1ccc(-n2c(=O)c3cc4c(=O)n(*)c(=O)c4cc3c2=O)c(C)c1"
},
"computation_time_ms": 2699.664,
"validation": {
"in_training_range": true
}
}
}
Polymer Comparison Analysis
Polythiophene Analysis (PI914):
SMILES: *c1ccc(*)s1
Molecular weight: 82.13 g/mol
Aromatic proportion: 100%
Rotatable bonds: 0
Thermal conductivity: 0.597 W/(m.K)
Aramid Analysis (PI627):
SMILES: *NC(=O)c1ccc(cc1)C(=O)Nc1ccc(cc1)c1ccc(cc1)*
Molecular weight: 314.34 g/mol
Aromatic proportion: 100%
Rotatable bonds: 4
Thermal conductivity: 0.576 W/(m.K)
Tools Used
world_dataset_query
calculate_molecular_weight
calculate_aromatic_proportion
count_rotatable_bonds
ai_list_services
ai_predict
Outcomes
- Found 24 high-TC polymers from RadonPy (>0.4 W/m.K)
- Top performer: polyimide PI690 at 0.619 W/(m.K)
- Structural analysis: 100% aromatic, 1 rotatable bond
- PolyNC Tg prediction: 315°C (high-temperature stable)
- Integrated WORLD + RDKit + BRAIN pipeline