Overview
The Paramus MCP Server provides 46 specialized tools accessible through VS Code Copilot via the Model Context Protocol. All tools are tested and validated with real outputs.
20
Chemistry Tools
8
Polymer Tools
4
Math Tools
14
Data Science & Python
Chemistry Tools (RDKit)
Molecular analysis and cheminformatics powered by RDKit
calculate_molecular_weight
Calculate molecular weight from SMILES
calculate_logp
Calculate LogP (lipophilicity)
check_lipinski_ro5
Check drug-likeness (Lipinski's Rule of Five)
smiles_to_inchi
Convert SMILES to InChI format
inchi_to_smiles
Convert InChI to SMILES format
mol_to_canonical_smiles
Generate canonical SMILES
calculate_tpsa
Calculate Topological Polar Surface Area
count_hbd
Count hydrogen bond donors
count_hba
Count hydrogen bond acceptors
count_rotatable_bonds
Count rotatable bonds
count_rings
Count all rings in molecule
count_aromatic_rings
Count aromatic rings
count_chiral_centers
Count chiral centers
get_molecular_formula
Get molecular formula
smiles_to_mol
Parse SMILES and get basic info
calculate_similarity
Calculate Tanimoto similarity
add_hydrogens
Add explicit hydrogens
remove_hydrogens
Remove explicit hydrogens
generate_3d_coords
Generate 3D coordinates
sanitize_molecule
Sanitize molecule structure
Polymer Tools (pSMILES)
Polymer structure analysis and manipulation using polymer SMILES notation
is_psmiles
Validate polymer SMILES notation
canonicalize_psmiles
Canonicalize polymer SMILES to standard form
get_polymer_fingerprint
Generate molecular fingerprint for polymers
dimerize_psmiles
Create dimer from monomer unit
create_alternating_copolymer
Create alternating copolymer structure
randomize_psmiles
Generate random structural variations
compute_polymer_similarity
Calculate similarity between polymers
Math Tools
Basic mathematical operations
Data Science Tools
Experimental design (DOE) and machine learning
Experimental Design (7 tools)
full_factorial
Full factorial design
fractional_factorial_2level
2-level factorial design
fractional_factorial
Fractional factorial design
plackett_burman
Plackett-Burman design
box_behnken
Box-Behnken design
central_composite
Central Composite design
latin_hypercube
Latin Hypercube Sampling
Machine Learning (5 tools)
train_random_forest_regressor
Train Random Forest model
train_svr
Train Support Vector Regressor
train_linear_regression
Train Linear Regression
calculate_regression_metrics
Calculate MSE, RMSE, Rยฒ
split_train_test
Split data for training/testing
Setup & Installation
๐ Official Download Portal
Get the latest version of Paramus MCP Server
Download from portal.paramus.ai โUsage in VS Code
After installation, restart VS Code and use tools through Copilot:
@paramus calculate the molecular weight of benzene (c1ccccc1)
@paramus double the number 42
@paramus generate a Box-Behnken design with 3 factors
@paramus execute this Python: import numpy as np; print(np.mean([1,2,3,4,5]))
Supported Platforms
- โ VS Code with GitHub Copilot (MCP native support)
- โ Claude Desktop (via portal.paramus.ai configuration)
- โ ChatGPT Desktop (via HTTP bridge - Beta)
- โ Cline VS Code Extension
Requirements
- Windows 10/11 (64-bit)
- Python 3.13+ (included in installer)
- VS Code or Claude Desktop