Build a semantic knowledge graph of polymer materials with WORLD platform.
Created database with polyethylene, polypropylene, polycarbonate entities linked to PolyNC prediction model.
Demonstrates thing creation, relations, and TTL export.
- RadonPy dataset with 1,070 polymers
- Semantic relationships (is_a, similar_to)
- SPARQL queries for reasoning
- Export to Turtle (TTL) format
Chat Dialogs
Explore RadonPy dataset
PROMPT:
I want to explore the RadonPy polymer dataset. What's available in WORLD?
CONTEXT: RadonPy contains molecular simulation data for 1,070 amorphous polymers
with 157 properties including structural, thermal, mechanical, and optical characteristics.
THINKING: I'll use world_dataset_list to show available datasets and their schemas.
RESULT:
RadonPy dataset: PI1070.csv (1.6 MB)
Contains 1,070 polymers with 157 properties:
- Structural (SMILES, molecular weight)
- Quantum (HOMO, LUMO, dipole)
- Thermal (Cp, Cv, thermal conductivity)
- Mechanical (density, bulk modulus)
View technical details
Add polymers to knowledge graph
PROMPT:
Let's add some polymers to the knowledge graph. Start with common engineering plastics:
Polyethylene, Polypropylene, Polystyrene, PMMA, PET, and Nylon-6.
CONTEXT: Each polymer becomes a "Thing" entity with properties like SMILES and class membership.
THINKING: Using world_thing_add to create entities with PSMILES and polymer class attributes.
RESULT:
Added 6 engineering plastics:
| Polymer | SMILES | Class |
|---------------|---------------------|------------|
| Polyethylene | *CC* | Polyolefin |
| Polypropylene | *CC(C)* | Polyolefin |
| Polystyrene | *CC(c1ccccc1)* | Vinyl |
| PMMA | *CC(C)(C(=O)OC)* | Acrylic |
View technical details
Create semantic relationships
PROMPT:
Now create relationships between the polymers based on their chemical families.
CONTEXT: Relations like "is_a" and "similar_to" enable semantic reasoning
and SPARQL queries across the knowledge graph.
THINKING: Creating is_a relations for classification and similar_to for structural similarity.
RESULT:
Created semantic relationships:
- is_a: Classification hierarchy (polymer to class)
- similar_to: Structural similarity between polymers
Enables queries like "Find all polyolefins" or "What is similar to PET?"
View technical details
Query with SPARQL
PROMPT:
Can you query the knowledge graph using SPARQL to find all polyolefins?
CONTEXT: SPARQL is the standard query language for semantic web and knowledge graphs.
THINKING: Writing SPARQL query to find polymers with is_a Polyolefin relation.
RESULT:
Query: SELECT ?polymer WHERE { ?polymer world:is_a world:Polyolefin }
Results:
| polymer | similar |
|---------------|-----------------|
| Polyethylene | Polypropylene |
| Polypropylene | - |
View technical details
Export to TTL format
PROMPT:
Save this knowledge graph so I can share it with my team.
CONTEXT: Turtle (TTL) is a compact RDF serialization format compatible with
triple stores like Apache Jena, Blazegraph, and GraphDB.
THINKING: Using world_save to export the knowledge graph to polymer_ontology.ttl.
RESULT:
Exported to polymer_ontology.ttl
- Load back with world_load
- Import into triple stores
- Share with collaborators
- Version control in Git
View technical details
Technical Details
Dataset Query
INPUT:
{
"tool": "world_dataset_list"
}
OUTPUT:
{
"dataset": "RadonPy",
"file": "PI1070.csv",
"size": "1.6 MB",
"polymers": 1070,
"properties": 157
}
Add Things
INPUT:
{
"tool": "world_thing_add",
"things": [
{"name": "Polyethylene", "smiles": "*CC*", "class": "Polyolefin"},
{"name": "Polypropylene", "smiles": "*CC(C)*", "class": "Polyolefin"}
]
}
Create Relations
INPUT:
{
"tool": "world_relation_add",
"relations": [
{"subject": "Polyethylene", "predicate": "is_a", "object": "Polyolefin"},
{"subject": "Polyethylene", "predicate": "similar_to", "object": "Polypropylene"}
]
}
SPARQL Query
INPUT:
SELECT ?polymer ?similar
WHERE {
?polymer world:is_a world:Polyolefin .
OPTIONAL { ?polymer world:similar_to ?similar }
}
TTL Export
OUTPUT:
@prefix world: <https://paramus.ai/world> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
world:Polyethylene a world:Polymer ;
world:smiles "*CC*" ;
world:is_a world:Polyolefin ;
world:similar_to world:Polypropylene .
world:Polypropylene a world:Polymer ;
world:smiles "*CC(C)*" ;
world:is_a world:Polyolefin .
Tools Used
world_dataset_list
world_thing_add
world_relation_add
world_sparql_query
world_save
Outcomes
- Created knowledge graph with 6 polymers and 3 classes
- Established is_a and similar_to semantic relations
- Successfully queried with SPARQL
- Exported to portable TTL format